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The influence of turbulence on the orientation state of a dilute density matched
suspension of stiff fibres at high Reynolds number in a planar contraction is
investigated. High-speed imaging and laser-Doppler velocimetry techniques are used
to quantify fibre orientation distribution and turbulent characteristics. A nearly
homogeneous isotropic grid-generated turbulent flow is introduced at the contraction
inlet. Flow Reynolds number and inlet turbulent characteristics are varied in order
to determine their effects on orientation distribution. The orientation anisotropy is
shown to be accurately modelled by a Fokker–Planck type equation. Results show
that rotational diffusion is highly influenced by inlet turbulent characteristics and
decays exponentially with convergence ratio. Furthermore, the effect of turbulent
energy production in the contraction is shown to be negligible. Also, the results show
that the flow Reynolds number has negligible effect on the development of orientation
anisotropy, and the influence of turbulence on fibre rotation is negligible for rotational
Péclet number >10.

1. Introduction
Fibres suspended in flow undergo mean motion owing to the mean fluid velocity,

random motion due to the fluctuating component of the fluid velocity and inertia-
driven motion. In many industrial processes, the behaviour and orientation of fibres
in a turbulent flow affects the transport, rheology and turbulent characteristics of
suspensions. In the paper industry, mechanical properties of manufactured paper are
known to be anisotropic owing to the anisotropic orientation of fibres induced by
the flow kinematics while passing through a planar contraction with flat walls. The
degree of fibre orientation anisotropy has a significant impact on the product quality.
Defects, such as curl in papers resulting in paper jamming in copier machines and
printers, are primarily due to fibre orientation anisotropy. Therefore, in addition to
the fundamental importance of understanding the influence of turbulence and mean
flow on fibre orientation, this problem is of practical interest in industrial processes.

In many industrial applications, the microscopic and macroscopic Reynolds
numbers are large and thus the inertia of discrete and continuous phases cannot
be neglected. When the particle Reynolds number is O(1) or greater, finite fibre
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Figure 1. Schematic of the experimental set-up with coordinate system.

inertia affects the motion and the Stokes flow simplifications do not apply. In gas–
particle suspensions where the flow is characterized by a large particle Stokes number
and a relatively small fluid Reynolds number, the particle inertia is important and
the fluid inertia is negligible. Thus, the fluid equation can be simplified to the linear
Stokes equation while the complete Navier–Stokes equation should be solved for the
flow adjacent to the particle surface (Koch & Hill 2001). The governing equations
become more complex when the Reynolds number of both particle and the fluid are
O(1) or greater. Although there is no averaged equation of motion for these flows,
computations based on direct numerical simulation (DNS) can accurately predict the
behaviour of the interacting particles (Bunner & Tryggvason 1999).

The macroscopic Reynolds number is defined based on the local mean streamwise
velocity in the contraction, U1, and the contraction local height, h, given by (see
figure 1)

Re=
U1h

ν
, (1)

where ν is the kinematic viscosity of fluid (water in this study). In this paper, we study
the effect of turbulence on orientation distribution of fibres suspended in water in a
planar contraction at high-flow Reynolds number. The experiments are conducted at
Re= 85 × 103 to 170 × 103.

In various investigations (e.g. Cox 1970; Harris & Pittman 1976; Olson & Kerekes
1998; Olson 2001) the microscopic Reynolds number is based on fibre length.
However, Bernstein & Shapiro (1994) used the fibre diameter as the length scale
and concluded that since the microscopic Reynolds number based on this length
scale is small, the effect of fibre inertia in their experiments is negligible. Since these
investigations do not include the motion of fibres with large fluid Reynolds number,
it is not clear which length scale can effectively describe the effect of fibre inertia.
Analogous to these studies, we define the microscopic Reynolds number based on the
streamwise mean local rate of strain, ∂U1/∂x1, and fibre half-length, L, given by

Ref =
(∂U1/∂x1)L

2

ν
. (2)

In the experiments presented in this study, the magnitude of Re and Ref are O(105)
and O(102) at the contraction outlet, respectively. Because of high Ref , the fibre
inertia can be important. However, considering fibre diameter as the length scale,
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Ref will be small enough to imply no effect of fibre inertia. The force balance in the
streamwise direction shows that fibre velocity induced by the drag force is dependent
on the fibre diameter, df , and the liquid and fibre density ratio. Thus, the relative
velocity of fibre and the carrier liquid is a function of fibre diameter only, if the ratio
of fibre to liquid density is approximately equal to one. For the fibre dimensions and
suspension properties used in this study, the slip velocity is very small. Assuming the
fibre diameter is the characteristic length scale, the time scale of the fibre, τf , is given
by

τf =
df (∂U1/∂x1)

U1(∂U1/∂x1)
=

df

U1

. (3)

For Re = 85 × 103 and fibre diameter 57 µm, the fibre inertial time response varies
from τf = 0.14 ms at x1 = 0 to τf = 0.0125 ms at the contraction outlet (see figure 1).
The characteristic time scale, τa , due to acceleration of mean flow is given by

τa =

(
∂U1

∂x1

)−1

. (4)

For the same flow Reynolds number, the time scale of the convective acceleration
varies from τa = 2500 ms at x1 = 0 to τa =2 ms at the outlet. The acceleration Stokes
number, Sta , defined as

Sta =
τf

τa

, (5)

varies from 5.6 × 10−5 to 6.25 × 10−3. When Sta is O(1) or greater, fibre inertia
becomes an important factor influencing the dynamics. Thus, it can be concluded that
the effect of inertia is negligible if the Reynolds number based on the fibre diameter,
and not length, is the appropriate parameter. This question will be addressed when
the distribution of the measured orientation anisotropy is compared to the theories
for inertialess fibres in suspension.

Considering the flow is turbulent, in order to study the dynamics of fibre motion
inside the contraction, it is necessary first to understand development of single-phase
turbulent flow in this geometry. Applying the Kelvin circulation theorem to predict
the intensity of turbulent vortices in an axisymmetric contraction, it can be shown
that the streamwise component of turbulence decays through the contraction, whereas
the transverse component grows (Prandtl 1933). The limitation of this Lagrangian
approach is that the model does not account for mutual interaction of continuum
vortices. A new model was put forth by Taylor (1935) using Cauchy’s equations and
assuming conservation of circulation. Taylor’s model predicts a slower rate of decay
for the fluctuating component of turbulence in the streamwise direction, and a slower
rate of amplification for the transverse fluctuating component. Based on comparison
with experimental data, the model developed by Batchelor & Proudman (1954) and
Ribner & Tucker (1953) more accurately predicts the development of turbulent kinetic
energy as a function of the total rate of strain on a fluid element. This model is only
valid for rapid distortions, where the time scale of the flow is much smaller than
the time scale of eddy interaction. Therefore, the fluid viscosity and the interaction
between eddies are ignored. Another limitation of the rapid distortion theory (RDT)
is that the characteristic turbulent scale must be much smaller than the spatial scales
of the mean flow.

Experimental studies of the development of turbulent quantities in an axisymmetric
contraction show that Prandtl’s theory only holds for contraction ratios, C < 4. The
contraction ratio, C, is defined as the ratio of the local mean velocity to the inlet mean



248 M. Parsheh, M. L. Brown and C. K. Aidun

velocity. According to Uberoi (1956), the measured streamwise component becomes
significantly higher than predicted at C > 4. This is attributed to the transfer of energy
between longitudinal and transverse velocity fluctuations. Goldstein & Durbin (1980)
show that the amplification of the streamwise Reynolds stress component after C = 4
is significantly reduced when the spatial scale of the turbulence increases. Another
finding of this work is that the interaction between the turbulence and the mean flow
increases with decreasing wavenumber. Tsuge (1984) found that small eddies decay
through the contraction, in agreement with Batchelor & Proudman (1954). However,
large eddies are amplified owing to the stretching of vortices.

Hussain & Ramjee (1976) investigated the effect of the shape of the contractions
on core flow. They measured velocity field in four different axisymmetric contractions
with identical total acceleration. They concluded that the acceleration is the
primary parameter. Many other investigators have studied different aspects of flow
through axisymmetric contractions. Townsend (1954) and Tucker & Reynolds (1968)
investigated the effect of contraction on the core turbulent flow with constant rate of
strain. Townsend found that after a certain degree of strain, an equilibrium structure
of turbulence is established. The mechanisms that transfer energy between the different
components are then so effective that further strain produces only a small alteration
in the structure. However, Tucker & Reynolds argue that the flow never reaches an
equilibrium structure.

Existing analytical models used to predict turbulence in contractions are shown to
be inaccurate for large C. Several numerical simulations of turbulent plane strain
flow have been performed to investigate the structure of homogeneous turbulence
subject to irrotational strain (e.g. Kwak, Reynolds & Ferziger 1975; Lee & Reynolds
1985). However, these studies are restricted to low Re flow with constant rate of
strain.

The focus of this study is on the dynamics and orientation of dilute fibre suspensions
in turbulent flow. In such dilute systems, each fibre can rotate freely without interacting
with other fibres. A non-interacting suspension is characterized by nL3 � 1 or φc � 1
for large-aspect-ratio fibres, where n is the number density of fibres, L is the fibre
half-length, and φc is the fibre volume fraction. According to Doi & Edwards (1978),
the transition from an infinitely dilute non-interacting suspension to a semi-dilute
interacting suspension occurs at φca

2
p = O(1), where ap is the fibre aspect ratio (the

ratio of fibre length to diameter).
We can approximate the shape of a fibre as an ellipsoid with a large aspect

ratio. The dynamics and orientation of an inertialess ellipsoid in the dilute regime
in laminar flow is given by Jeffery’s relation (1922) and its generalization to any
axisymmetric particle is given by Brenner (1974). The preferential alignment of fibres
in one direction changes the suspension’s bulk properties and makes the transport
tensors anisotropic. An expression for the contribution of fibres to the bulk average
deviatoric stress, in terms of rate of strain tensor and orientation vector, is derived
by Batchelor (1971). In non-interacting dilute suspension of fibres, this contribution
is given by

µf ≈ 4
3
π

nL3

ln(ap)
µ, (6)

where µ is the dynamic viscosity of the carrier fluid.
A limited number of studies has focused on the motion of rigid fibres in turbulent

flow. In turbulent flow, the dispersion of individual fibres is altered owing to the
presence of velocity fluctuations. Krushkal & Gallily (1988) studied the development
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of orientation distribution of non-spherical aerosol particles in a turbulent shear
flow. They concluded that particles become randomly oriented in the presence of
strong turbulence. However, for flow with mean velocity gradients, the orientation
distribution function is anisotropic if the turbulent intensity is not large enough to
randomize the particles. Bernstein & Shapiro (1994) investigated the orientation of
glass fibres in laminar and turbulent pipe flow. They found that at low-Reynolds-
number laminar flow, the fibres are randomly distributed near the pipe centre. As
the Reynolds number increases within the laminar regime, the fibres become more
oriented in the streamwise direction. At high-Reynolds-number turbulent flow, the
randomizing effect of the turbulence leads to an almost random orientation.

Orientation anisotropy of fibres in a planar contraction has been studied by
various investigators. Harris & Pittman (1976) studied a dilute suspension of fibres
in a planar contraction with Re = 1000. Owing to low microscopic Reynolds number,
the effect of fibre inertia was negligible. The fibre orientation anisotropy was found
to vary with C and to be independent of Re, ν, ap and contraction half-angle, β .
However, in most fibre suspension flows of interest, the influence of fibre inertia
and turbulence on orientation cannot be neglected. Ullmar & Norman (1997) and
Ullmar (1998) measured the orientation anisotropy of nylon fibres in the (x1, x3)-plane
(see figure 1) in a straight channel downstream of the contraction outlet. The flow
inlet to the contraction consists of a series of turbulence-generating step expansion
tubes positioned immediately upstream of the inlet. In these studies, the influence of
flow Reynolds number, contraction ratio and fibre concentration on the orientation
anisotropy is investigated. They concluded that the orientation anisotropy is strongly
dependent on the contraction ratio and almost independent of the fluid Reynolds
number. However, the turbulent fluctuations in these studies were not measured;
therefore, they could not relate the orientation anisotropy to the turbulent flow
characteristics. It should be noted that in their studies, the measured orientation
distribution is an average over the entire height of a straight channel attached to
the downstream of the contraction outlet. It is known that the turbulent properties
change in the straight channel and thus the measured orientation distribution would
be different from that at the outlet of the contraction (see e.g. Harris & Pittman
1976).

Analogous to suspension flows with Brownian motion and fibre–fibre interaction,
the effects of turbulence on orientation anisotropy have been modelled by a rotational
diffusion coefficient tensor (e.g. Krushkal & Gallily 1988; Olson & Kerekes 1998;
Olson et al. 2004). Olson & Kerekes expressed the turbulence-induced rotational
diffusion coefficient in an isotropic turbulent flow as a function of turbulent integral
time and length scales, turbulent intensity and fibre length. They found that by
increasing the ratio of the fibre length to the Lagrangian integral length scale, the
diffusion coefficient decreases. Olson et al. (2004) numerically solved the Fokker–
Planck equation governing the orientation distribution of fibres at the centreline
of a planar contraction. They state that the rotational diffusion coefficient, Dr , is
constant throughout the contraction and Dr = 2 s−1 gives the best agreement with the
experimental studies of Ullmar (1998) and Zhang (2001). A quantitative comparison
requires orientation measurements at the contraction centreline (as done in this study)
where the equations are derived. The measurement of fibre orientation distribution at
a straight channel downstream of the contraction outlet represents an average of all
fibres and is, therefore, inconsistent with the governing equations for the centreline.

The objective of our study is to determine the effect of turbulence on the orientation
distribution function of fibres in a planar contraction. To understand the impact of
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turbulence on orientation anisotropy requires measurement of orientation at different
streamwise positions in the contraction with clearly defined turbulent conditions at the
inlet and knowledge of turbulent flow variations along the contraction. Therefore, the
experiment is designed so that the fibre–fibre interactions and the effect of the fibres
on the flow rheology become negligible. Nearly homogeneous isotropic grid turbulent
flow is introduced at the channel inlet and its variation in the contraction is measured.
Since the influence of turbulence on orientation anisotropy can be expressed by an
orientational diffusion coefficient, in this paper we also examine the factors affecting
this coefficient. In order to distinguish the effect of inlet flow characteristics from the
produced turbulence in the contraction, the turbulent intensity at the channel inlet is
varied by adjusting the position of the grid relative to the inlet. Since the turbulent
intensity decays in the contraction and eventually the flow becomes nearly laminar,
this approach provides an opportunity to examine the effect of turbulence on the
dynamics of fibre orientation. In order to obtain reliable average data, the motion
of a large population of fibres is quantified and the development of the orientation
distribution function at different downstream positions in the contraction is examined.

2. Theory
In this section, we discuss the theoretical background for the dynamics of fibre

orientation in laminar flow, followed by application of existing fibre orientation
models in turbulent flow.

In this study, the fibres can be assumed to be rigid since the viscous drag force is
insufficient to deform the fibres. To verify this point, let us consider the dimensionless
parameter Z ≡ [2πµ(∂U1/∂x1)(2L)4)/(B ln(2ap)], which represents the ratio of viscous
drag force to the elastic recovery force of the fibre in dilute suspensions (Becker &
Shelley 2001). In this equation, B is the effective bending rigidity which is equal to
the product of the Young’s modulus and the second moment of area, I = πd4

f /64. For
a typical rayon fibre with 60 µm diameter and 3.2 mm length and a Young’s modulus
2 GPa, the maximum value of Z is O(10−2) at the contraction outlet. This shows that
hydrodynamic stresses are insufficient to deform the rayon fibres.

Assuming a fibre can be approximated by a large-aspect-ratio ellipsoid, we note
that the change in unit orientation vector, pi , for a single ellipsoidal particle (Jeffery
1922) is given by

∂pi

∂t
=Ωijpi + λ(Eijpj − Eklpkplpi), (7)

where t denotes time, and the antisymmetric part, Ωij , and symmetric part, Eij , of
the velocity gradient tensor are given by

Ωij =
1

2

(
∂Ui

∂xj

− ∂Uj

∂xi

)
, (8)

Eij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, (9)

respectively, and λ is a function of aspect ratio of the ellipsoid, defined as

λ=
a2

p − 1

a2
p + 1

. (10)

The instantaneous velocity component of the fluid are defined as ui = (U1 + u′
1, U2 +

u′
2, U3 + u′

3). Considering the contraction shown in figure 1 with the origin of the
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coordinate system located at contraction inlet and the streamwise direction denoted
by x1, the mean velocity gradient tensor for the core flow is given by

∂Ui

∂xj

=




∂U1

∂x1

∂U1

∂x2

∼= 0
∂U1

∂x3

∼= 0

∂U2

∂x1

−∂U1

∂x1

0

0 0 0




. (11)

If the effect of the sidewalls is negligible, the mean velocity in the x3-direction, U3,
is zero. Far downstream of the grid, the streamwise mean velocity profile, U1, along
the x2- and x3-directions are uniform. In the contraction, the mean velocity profile
remains uniform except at the boundary-layer region. Thus, ∂U1/∂x2 and ∂U1/∂x3

are approximately zero in the core flow. It is expected that the streamwise rate of
strain, ∂U1/∂x1, is the dominant term influencing fibre orientation in the contraction.
The only non-zero component of the mean vorticity vector, which is responsible for
production of turbulence in a contraction, is given by

ω3 =
∂U2

∂x1

. (12)

However, this term is zero at the contraction centreline because of symmetry.
When there are many fibres suspended in the flow, the most complete description

of the orientation state is through the probability distribution function of the fibre
orientation, ψ( p, t) defined by ∮

ψ( p, t) d p = 1, (13)

where p is defined as the unit orientation vector along the longitudinal axis of the
fibre (Dinh & Armstrong 1984). The planar distribution function for fibres aligned
along the (x1, x3)-plane (i.e. θ = 90◦), ψp is given by∫ π

0

ψp(φ, t) dφ = 1. (14)

Based on conservation principles in p space, the distribution function must satisfy
the continuity equation given by

Dψ

Dt
+ ∇ · ( ṗψ) = 0, (15)

where ∇ is the gradient operator in orientation space (i.e. the gradient operator of
the surface of a unit sphere). The orientation distribution function provides the most
general description of the orientation state of fibres. However, it is not possible
to quantify directly the differences between two different distribution functions. We
require a method to accurately represent ψ while readily quantifying the downstream
development of orientation of fibres by a numerical index. Advani & Tucker (1987)
show that even-order tensors give a concise description of ψ . The general fourth-order
orientation tensor is given by

aijkl =

∮
pipjpkplψ( p) d p. (16)
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The fourth-order planar orientation tensor in the (x1, x3)-plane is defined as

a
p
ijkl =

∫ π

0

pipjpkplψ
p(φ) dφ. (17)

These symmetric tensors are functions of time and position and represent moments
of the orientation distribution function. The diagonal components of the orientation
tensor show the degree of the alignment and the off-diagonal terms represent the
skewness. Orientation distribution functions can be accurately reproduced given the
orientation tensor components. Similar to other investigations (e.g. Advani & Tucker
1990; Azaiez, Guenette & Ait-Kadi 1997; Chiba, Yasuda & Nakamura 2001), in this
study the single component of the fourth-order planar orientation tensor, a

p

1111, is
used as a parameter to show the development of the orientation distribution function.
It is important to note that a

p

1111 only serves as an effective parameter to quantify
planar orientation state. From this point on, the superscript ‘p’ in a

p

1111 is dropped
for convenience.

Analogous to suspension flows with Brownian motion, and semi-dilute suspensions
with fibre–fibre interactions, the time rate of change of the orientation distribution
function ψ( p, t) in turbulent flow is modelled by a Fokker–Planck type equation (see
Advani & Tucker 1987; Doi & Edwards 1988; Krushkal & Gallily 1988; Koch 1995;
Olson & Kerekes 1998), given by

Dψ

Dt
= Dr∇2ψ − ∇ · ( ṗψ), (18)

where Dr is the rotational diffusion coefficient which is assumed to be isotropic. In
this equation, the translational diffusion is neglected because the fibre concentration
in the suspension flow is assumed to be uniform. Depending on the flow conditions,
the diffusion term on the right-hand side of (18) represents the randomization effect
due to either the Brownian motion (Doi & Edwards 1988), hydrodynamic fibre–fibre
interaction (Koch 1995) or the turbulent eddies (Olson & Kerekes 1998). In the
present study, this model implies that fibre orientation development is the interplay
between the arranging effect of the velocity gradient field and the randomizing effect
of the turbulent eddies.

The rotational diffusion coefficient, Dr , has been modelled by several investigators.
Krushkal & Gallily (1988) used a relationship based on Kolmogoroff’s local isotropy
hypothesis for small eddies, and from dimensional analysis derived the expression,

Dr ≈
( ε

ν

)1/2

, (19)

where ε is the dissipation rate of turbulent energy per unit mass, given by

ε = ν
∑
i,j

(
∂u′

i

∂xj

)2

, (20)

(Hinze 1975). Olson (2001) proposed a modification to the rotational diffusion
coefficient of Krushkal & Gallily, given by

Dr ≈ 0.7

(
4ε

15ν

)1/2

. (21)
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Olson & Kerekes (1998) employed a statistical analysis of the equation of motion for
a single fibre moving in homogeneous isotropic turbulent flow to derive relations for
turbulence-induced rotational and translational diffusion coefficients. They suggest
that for long fibres, where the Lagrangian particle velocity correlation is the same
as the fluid’s Eulerian velocity correlation (Olson & Kerekes 1998), the rotational
diffusion coefficient is given by

Dr = 24 u′2
1

τ

(2L)2
Λ

2L

(
erf

(
π1/2(2L)

2Λ

)
+

16

π2

(
Λ

2L

)3

(1 − exp (−π(2L)2/4Λ2))

+
2

π

Λ

2L
(exp (−π(2L)2/4Λ2) − 3)

)
. (22)

This model implies that for long fibres, Dr is a function of the fluid Eulerian
integral time scale, τ , Eulerian integral length scale, Λ, and streamwise component of
fluctuating velocity.

A primary objective in this study is to investigate the impact of turbulence on fibre
orientation. However, the turbulent intensity varies significantly downstream from
the inlet as the contraction ratio increases. To investigate the variation in turbulent
intensity, let us consider the general energy production term in the Reynolds stress
transport equation, given by

Pij = −u′
iu

′
l

∂Uj

∂xl

− u′
ju

′
l

∂Ui

∂xl

. (23)

Considering the velocity gradient tensor of the flow in the planar contraction, given
by (11), the normal components of the energy production for turbulent flow at the
contraction centreline simplify to

P11 = −2u
′2
1

∂U1

∂x1

, (24)

P22 = 2u
′2
2

∂U1

∂x1

, (25)

P33 = 0, (26)

and the turbulent kinetic energy production at the contraction centreline is given by

Kp =
(
u

′2
2 − u

′2
1

)∂U1

∂x1

. (27)

Considering a homogeneous, isotropic turbulent flow at the inlet, equations (24) and
(25) imply that the fluctuating velocity component in the x1-direction is likely to
decrease, and in the x2-direction to increase, because of the negative and positive
signs of the production terms in these directions, respectively. This is in agreement
with Prandtl’s theory (1933). In addition, production of turbulent kinetic energy is
expected to be almost zero, since in equation (27), u

′2
1 and u

′2
2 are almost equal in

magnitude. This implies that for an isotropic turbulent flow at the inlet, the turbulent
kinetic energy is expected to decrease owing to negligible production and finite viscous
dissipation. Further downstream, where the flow becomes significantly anisotropic,
the production term becomes larger than the rate of dissipation. We show below, in
the analysis and results section, that this relation is consistent with the measurement
of turbulent fluctuating components as a function of contraction ratio, C, from the
inlet to the outlet of the contraction.
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In the following sections, we present measurements of turbulent flow field and fibre
orientation distribution and show the relative significance of mean velocity gradient
and turbulent parameters on the evolution of fibre orientation distribution in the
contraction.

3. Experimental set-up and data processing technique
The method used to quantify turbulence development and fibre motion in the

contraction is based on laser-Doppler velocimetry (LDV) and high-speed imaging.
Velocity field measurements of single-phase flow and visualization of dilute fibre
suspension flow were carried out in a small closed water loop. The test section is
constructed of 12 mm thick Plexiglas to allow for visual access. Flow first passes
through a hexagonal flow straightener installed in a constant cross-section channel
upstream of the contraction. The flow straightener has an open width of 10 mm and
a closed width of 0.4 mm. Free-stream turbulence is then generated by a monoplane
square grid with rectangular bars. The mesh size, M , and bar width of the grid are
9.5 mm, and 3.2 mm, respectively, resulting in a solidity of 0.56 (the solidity is defined
as the grid geometric blockage area divided by the total area). The turbulent intensity
at the contraction inlet is changed by repositioning the grid relative to the contraction
inlet. This distance is normalized by mesh size, M , and is denoted by lr hereinafter. In
order to achieve homogeneous isotropic turbulence at the contraction inlet, the grid
was located at least 20 mesh sizes upstream of the contraction inlet. The contraction
is 550 mm in length, 155 mm in width and the inlet height is 179.2 mm. In most of the
experiments presented, the outlet height is 16 mm, giving the contraction half-angle,
β = 8.4◦, and maximum contraction ratio of 11.2. The contraction ratio is defined as

C =
U1

U1,0

, (28)

where U1 and U1,0 are the local streamwise mean velocity and the streamwise mean
inlet velocity, respectively. Contractions with different maximum contraction ratio,
Cmax , are obtained by changing the outlet height. The estimated velocity components
U1,p and U2,p based on potential flow are given by

U1,p =
νRe

h0 − 2x1 tan β
, (29a)

U2,p = − 2ν tan βRe

(h0 − 2x1 tan β)2
x2, (29b)

where h0 denotes the contraction inlet height. The flow Reynolds number, Re, is
constant throughout the contraction. The development of the streamwise mean rate
of strain in the contraction with the above dimensions is shown in figure 2, where
(∂U1/∂x1)0 denotes the velocity gradient at the inlet.

A TSI two-component LDV system is used to measure the instantaneous velocity
field of single-phase water flow inside the contraction. The light source is a 5 W argon-
ion laser (Coherent, Innova 70), and the scattering particles are 0.3 µm alumina. The
elliptical measurement volume at the beam intersection is 0.1 mm in diameter and
4 mm in length. The optical head is traversed automatically using a three-dimensional
linear traversing system with ±0.01 mm accuracy. The maximum sampling rate
of instantaneous velocity varies from 500 to 1500 samples s−1. For consistency,
measurements are sampled at a constant rate of 500 samples s−1 for a period of



Orientation of stiff fibres suspended in turbulent flow 255

80

60

40

20

0

2 4 6 8 10

(∂
U

1/
∂x

1)
/(

∂U
1/

∂x
1)

0

C

Figure 2. Normalized development of streamwise rate of strain along the converging
channel’s centreline.

90 s. In these experiments, Re is varied between 85 × 103 and 170 × 103, with exit
velocity varying from 4.9 m s−1 to 9.8 m s−1.

3.1. Visualization and image processing technique

An infinite dilute suspension of stiff opaque rayon fibres was visualized. The fibres
are nominally 3.2 mm in length, 57 µm in diameter, with a specific gravity of 1.14.
The suspension’s nL3-value is 0.0053, which suggests fibre–fibre interactions and the
effects of fibres on flow rheology are negligible (see equation (6)). The fibres were
dried by putting them for at least 24 h in an oven at temperature 105 ◦C.

The suspended fibres were visualized in the (x1, x3)-plane using a laser sheet and
high-speed camera. A pulsed infra-red laser (Oxford model HSI1000) with pulse
duration of 15 µs was synchronized with a V5 Phantom high-speed camera. A lens
was used to project a 3.2 mm thick, 100 mm wide rectangular laser sheet into the
contraction. The laser head was translated linearly in the x2-direction with resolution
± 0.01 mm. The camera was translated linearly in the x1-, x2- and x3-directions.

Images were taken at the centreplane of the contraction, defined as the (x1, x3)-plane
located within x2 = ±1.6mm. Images have dimension of 9.6 mm in the x1-direction
and 14.5 mm in the x3-direction with 342×512 pixel resolution. A total of 8190 image
files are analysed at each position. The orientation distribution state is evaluated from
a succession of approximately 4000 randomly imaged fibres at each position along
the centreplane.

A complete software suite for analysing these images was developed. This software
inverts the raw image, scans the frame, and identifies each fibre in the image. The
few curved fibres encountered in the images were not considered in the orientation
measurements. Since there is no fibre–fibre interaction, only the straight fibres are
considered without biasing the resulting fibre orientation distribution function. Since
all fibres are not perfectly straight, as shown in figure 3(a), to be very accurate we
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Figure 3. (a) Sample of raw images obtained from the visualization. (b) Image after inversion,
background removal, binarization and skeletonization. The flow direction is from bottom
to top.

x3

x1φ

Figure 4. The schematic of the division of each fibre into segments and fitting lines by the
least-squares technique.

divide each fibre into a number of segments, as shown in figure 4. Straight lines
are fitted to each segment, and the angle distribution of the segments is averaged
and used to determine the fibre orientation distribution. However, we find that the
deviation of fibre shape from a straight line is so small that assuming the equation
for a straight fibre provides us with an accurate prediction of orientation.

The following is a more detailed explanation of the data-processing procedure
mentioned above. First, the background of each image is found by averaging 21
neighbouring frames. The background is then subtracted from the original images.
This serves to eliminate the effect of lighting gradients as well as removing dirt and
other artefacts. As a result, fibres are isolated on a clear background. Next, the
images are binarized, which simplifies the subsequent orientation analysis. Once the
images are properly conditioned, the position and orientation of each observed fibre is
evaluated. Each binarized image of a fibre is eroded, using a skeletonizing algorithm,
to single-pixel-width segments. This is accomplished by loading, in turn, each of the
binarized frame images.

Each skeletonized fibre in the frame is then scanned to locate and eliminate each
pixel that represents the intersection of two fibres. Each fibre of less than 0.64 mm in
length is discarded as being a non-fibre image artefact. Data files are then written to
document the position of each fibre in the frame. This process is repeated for every
frame in the sequence. Figure 3 shows the raw image and the resulting processed
image.

The orientation angle, φ, of each fibre is quantified once the images are properly
conditioned and the position of each observed fibre has been evaluated. This is done



Orientation of stiff fibres suspended in turbulent flow 257

by starting from the head of the fibre to divide them into segments of 23 pixels
(0.64 mm) long. Once the remaining part of the fibre dimension is smaller than
46 pixels, the division of the fibre is stopped and the remaining part is considered
as a segment. Then, a line is fitted to each segment by the least-squares method.
The orientation angles of measured fibres are arranged in bins of 3◦ increments
to evaluate the orientation distribution function. Finally, the obtained orientation
distribution function is normalized and plotted versus the bin centres.

In these measurements, the streamwise length of images is chosen to be three times
the fibre length. The contraction ratio varies slightly along this length and therefore
we use the effective contraction ratio which is defined as

Ce =
1

�x1

∫ x1,2

x1,1

C(x1) dx1,

where �x1 = 9.6 mm, and x1,1 and x1,2 are the upstream and downstream edge
positions of the image, respectively. The straight channel upstream of the contraction
inlet and the contraction are joined by a set of opaque flanges 30 mm in length. Owing
to the presence of these flanges and the finite length of the images, the first position
downstream of the contraction inlet is Ce = 1.1. From this point on the subscript ‘e’
is dropped for convenience.

4. Analysis and results
In this section, we present measurements of fibre orientation as well as the LDV

measurements of the flow field. Before considering the effect of turbulence on fibre
orientation, we must first characterize the development of the turbulent flow in
the contraction. In the following paragraphs, we present results from the LDV
measurements of the turbulent velocity fluctuations.

4.1. Turbulence in planar contractions

A nearly homogeneous, isotropic grid turbulent flow is introduced at the contraction
inlet. At this position, the variations between the r.m.s.-velocity components are
within ± 5 % outside the boundary layer. It has been observed that the mean
velocity components can be closely approximated with the velocity components
based on a simple quasi-one-dimensional potential flow, provided by equation (29)
and demonstrated in figure 5. This can be attributed to the presence of uniform
streamwise velocity profiles (i.e. ∂U1/∂x2

∼= 0 and ∂U1/∂x3
∼= 0) at the core region

of the contraction, low turbulent intensity components, and the presence of a thin
relaminarized boundary layer along the walls (Parsheh 2001). The velocity components
based on potential flow are used in the fibre orientation analysis throughout this
paper.

The decay of turbulent intensity behind a uniform grid in a straight channel has
been approximated by several investigators. One such model for flow in a straight
channel is given by Roach (1987),√

u
′2
1

U1,0

= co

(
l

d

)−5/7

, (30)

here, U1,0 is the streamwise mean velocity in the straight channel upstream of the
contraction inlet, l is the downstream position from the grid, d is the grid bar
width and co is a constant based on grid geometry. However, the magnitude of the
exponent varies in different investigations. For example, Groth & Johansson (1988)
obtained − 0.50 and Westin et al. (1994) obtained − 0.62. If it is assumed that the
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Figure 5. (a) Measured streamwise mean velocity along the contraction centreline, Re=
85 × 103 (�) and Re= 150 × 103 (�) compared to potential theory (—). (b) Measured mean
velocity in the x2-direction at C = 1.1 for Re=85 × 103 (�) and Re= 150 × 103 (�) compared
to pontential theory (—).
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Figure 6. Normalized streamwise x1-component of r.m.s.-velocity downstream of the
monoplanar grid for case Re =85 × 103, lr = 20 (+) compared to grid turbulence decay in
a straight channel based on relation by Roach (1987) (—).

decaying turbulence can be predicted by the K-ε model, the exponent can be easily
derived if the turbulent diffusion terms are neglected. This will give an exponent of
− 0.52 for the empirical coefficient C ′

ε2 = 1.8. Figure 6 shows that, for the flow at the
contraction centreline, this model agrees well with the measured data for up to 55M

(55 mesh size) downstream of the grid, where co = 1.13 as specified by Roach (1987).
The slight deviation between the measured results and results from equation (30) is
most probably due to the dependence of co on Reynolds number when Re > 104. The
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Figure 7. Normalized r.m.s.-velocity components along the channel centreline. The x1-
component (+), x2-component (×), and x3-component (∗) at Re= 85 × 103 and lr = 20 are
compared with the x1-component at lr = 60 (�).

agreement between decaying grid turbulent flow in constant cross-section channels
and in the contraction at C < 2 suggests that the production of turbulence is very
small in this region.

Figure 7 shows the normalized r.m.s.-velocity components at the contraction
centreline in case Re =85 × 103 and lr = 20 and the streamwise component in case
Re = 85 × 103 and lr = 60. The development of the streamwise and cross-stream
components when lr = 20 are characterized by a minimum at C = 2.1 and C =1.7,
respectively. However, the minimum value of the streamwise component when lr =60
occurs at C = 1.7. This implies that the location of the minimum value is dependent on
inlet turbulence conditions. The turbulence level in the x1-direction should decrease,
whereas in the x2-direction should increase, since the production terms in the x1- and
x2-directions have opposite signs. The total production of the kinetic energy is the
sum of two terms with different signs. This implies that when an isotropic turbulent
flow enters the contraction, the production of the turbulent kinetic energy would be
zero immediately downstream of the inlet. This leads to decay of turbulent intensity
because of dissipation. Further downstream, the turbulent kinetic energy increases
because of anisotropy due to a higher Reynolds stress component in the x2-direction
than in the x1-direction. This effect becomes amplified further downstream at the high
contraction ratio region. The increase in the streamwise component of the turbulent
kinetic energy is most probably because of inter-component distribution of energy.

The inlet value of the turbulent intensity nearly doubles when the grid position
is moved downstream from lr =60 to lr =20. The streamwise turbulent intensity

component along the centreline, T1 ≡
√

u
′2
1 /U1, decreases monotonically downstream

of the inlet to less than 1.5 % at the contraction outlet. Figure 8 shows this component
for various cases with different flow Reynolds numbers (Re = 85×103 and Re = 170×
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Figure 8. Streamwise component of turbulent intensity along the contraction centreline for
Re = 85 × 103, lr = 60, and β = 8.4◦ (�); Re = 85 × 103, lr = 20 and β = 8.4◦ (+); Re = 170 × 103,
lr = 20 and β = 8.4◦ (×); Re = 85 × 103, lr = 20, and β = 8.15◦ (∇); Re = 85 × 103, lr =20, and
β =8.8◦ (�); and the exponential decaying curve fitted to data, (e−1.6C∗

). (—)

103), contraction half-angles and inlet turbulent conditions. In this figure, T ∗
1 ≡

(T1−T1,e)/(T1,0 − T1,e) and C∗ ≡ C − 1, where T1,0 and T1,e are the values of T1

at inlet and outlet, respectively. As shown in figure 8, these cases collapse around
an exponentially decaying curve, e−1.6C∗

, where the coefficient −1.6 is based on the
least-squares fit to the data. The exponentially decaying function presented above and
T ∗

1 (C∗) based on the power-law function of Roach (1987) almost overlap when C < 2.
At C > 2, the exponential function is in better agreement to the experimental data.
The deviation between these functions at C > 2 is probably due to the production of
turbulent kinetic energy in the x2-direction, given by equation (25), and the transfer
of energy to the x1-direction, as explained above.

4.2. Dynamics of fibre orientation

The orientation of a single fibre can be described by the angles (φ, θ) defined in
figure 1. Goldsmith & Mason (1967) derived the general equations for the time
rate of change of the orientation angles, φ and θ , in three-dimensional flows. The
angular velocity components of large-aspect-ratio fibres, λ ≡ 1, for flow through
planar contractions, from Goldsmith & Mason (1967) and also from (7) simplify to

dφ

dt
= −∂U1

∂x1

cos φ sin φ, (31)

dθ

dt
= −∂U2

∂x1

cos φ sin2 θ +
1

4

∂U1

∂x1

cos(2φ) sin(2θ) +
3

4

∂U1

∂x1

sin(2θ). (32)

The mean velocity gradients, computed at the centre of each fibre, are assumed to be
constant along the fibre. The time rate of change of the angle, γ , between the x2-axis
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and the line of projection on the (x1, x2)-plane (see figure 1), is given by

dγ

dt
= −∂U2

∂x1

sin2 γ +
∂U1

∂x1

sin(2γ ). (33)

In addition to the trivial steady-state solution, γ = 0, the other stable steady-state
solution is given when the fibres align with the streamlines.

The relationship between ∂U1,p/∂x1 and ∂U2,p/∂x1 from equation (29), is given by

∂U2,p

∂x1

= −4 tan β

h(x1)

∂U1,p

∂x1

x2. (34)

This equation shows that when |x2| � 0.3(h/2), ∂U2,p/∂x1 is at least one order of
magnitude smaller than ∂U1,p/∂x1.

Equation (32) can be greatly simplified when applied to the centre symmetry plane;
therefore we have focused the fibre orientation measurements in the region |x2| � L,
where L is the fibre half-length. The first term on the right-hand side of equation (32)
is at least one order of magnitude smaller than the third term when

40 tan β

h(x1)
x2 �

∣∣∣∣ cot θ

cos φ

∣∣∣∣ . (35)

Considering a random orientation distribution, at least 90 % of fibres satisfy equation
(35) at x1 = 0 inside the region where |x2| � L (centreplane) for the contraction shown
in figure 1. This assumption becomes even better when the flow develops downstream.
Since only a small fraction of fibres do not satisfy the above criteria, their relative
contribution to the overall orientation distribution is negligible. For the range of
angles outlined above, equation (32) can be approximated by

dθ

dt
=

1

4

(
∂U1

∂x1

)
cos(2φ) sin(2θ) +

3

4

(
∂U1

∂x1

)
sin(2θ). (36)

It is apparent from (31) and (36) that change of φ is independent of θ , however, the
evolution of θ depends on φ through cos(2φ). As these equations imply, fibres rotate
toward the stable steady-state solution, φ = 0◦ and θ =90◦, with angular velocity
components dθ/dt � dφ/dt . However, the angular velocity components dφ/dt or
dθ/dt are zero when the initial fibre angle, φo = 90◦ or θo = 0◦, respectively, since the
acting moment on the fibre is zero. Solution of equation (31) is given by

tan(φ) = tan(φo)e
−κ , (37)

where

κ =

∫ x1

x1,o

1

U1

(
∂U1

∂x1

)
dx1, (38)

and the subscript ‘o’ denotes initial condition and κ is the total dimensionless
acceleration imposed on the flow in the contraction from x1,o to x1. This equation
relates the planar evolution of the orientation angle of a single fibre, φ, to the flow
acceleration in the contraction.

In this study, we have used the single component of the fourth-order planar
orientational tensor, a1111, as a parameter to quantify the orientation distribution
function. To do this, the discrete form of equation (17) is used. The value of a1111

varies between 0 and 1.0 when all fibres are oriented in the x3- and x1-directions,
respectively. For a perfectly random distribution of fibres, this value is 0.375.
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Development of fibre orientation distribution along the contraction centreplane in
turbulent flow, derived by substituting equation (31) into the planar form of equation
(18), is given by

∂ψp

∂x∗
1

=
∂2ψp

∂φ2
+ Per

∂

∂φ

(
1
2
ψp sin(2φ)

)
, (39)

where x∗
1 = x1/(U1/Dr ) is the dimensionless streamwise axis and the rotational Péclet

number is defined as, Per ≡ (∂U1/∂x1)/Dr . This equation shows that the relevant
parameter, Per , is the ratio of the mean velocity gradient to the rotational diffusion
coefficient. Therefore, to predict the development of the fibre orientation distribution
function we consider the variation of Per with respect to the contraction ratio. In
doing so, we have considered the dependence of Dr and ∂U1/∂x1 on C. The variation
of ∂U1/∂x1 with C is clear. In the model by Olson & Kerekes (equation (22)),

according to Taylor’s hypothesis τ is given by Λ/U1 and therefore, u
′2
1 (τ/(2L)2)(Λ/2L)

can be written as (

√
u

′2
1 Λ2T1)/(2L)3. This relation may be approximated by√

u
′2
1 T1/2L, since, as shown in the next section, in these experiments Λ is the

same order of magnitude as L throughout the contraction. Consistent with Olson
& Kerekes’s model (1998), we consider that Dr varies in proportion to turbulent
intensity in the contraction. Our measurements show that turbulent intensity decays
exponentially with C, that is e−1.6C∗

, as discussed in the previous section, and shown
in figure 8. At C > 4, turbulent intensity becomes very small, but finite owing
to the small production of turbulent energy. However, in this region (i.e. C > 4)
the effect of turbulence on fibre orientation becomes negligible where the effect
of mean velocity gradient on fibre orientation becomes dominant. To represent
effectively the competing roles of turbulence and mean velocity gradient on fibre
orientation distribution in the contraction, we write the rotational Péclet number in the
form,

Per =
2L

T1,0

(
dC

dx1

)
e0.95C, (40)

where the exponential term appears because of the exponential decay of turbulent
intensity, and the coefficient of 0.95 is based on the least-squares fit to all the data from
this study. In this analysis, the initial orientation distribution function is measured
at C = 1.1 and the value of U1 and ∂U1/∂x1 are evaluated at the centre of the fibre.
We show in figure 9 that this model accurately predicts all of the data within the
range of parameters (Re, β , T1,0) covered in this study. To do this, we calculate the
parameter a1111 by solving equation (39). The results are normalized with the initial
value (a1111,o) measured at C = 1.1 and compared with the experimental data.

As shown in figure 9, the case considered by Olson et al. (2004) is different from
the experiments in this study. This can be attributed to the fact that data by Ullmar
(1998) are not obtained in the contraction. In addition, the inlet flow and turbulent
characteristics in the experiments by Ullmar (1998) and Zhang (2001) are different
from this study.

4.3. Effect of turbulence on orientation

The models proposed by Krushkal & Gallily (1988) and Olson & Kerekes (1998),
given by equations (19) and (22), respectively, are evaluated from the measured
turbulence characteristics in the contraction. In order to evaluate equation (22), the
streamwise Eulerian integral time scale, τ , is evaluated from the autocorrelation of
the streamwise instantaneous velocity signal. The integral length scale, Λ, is estimated
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Figure 9. Comparison of measured (�) a1111 at Re= 85 × 103 and lr = 60 with current model
(—) and Olson’s model with Dr =2 s−1 (- . -); measured (+) at Re = 85 × 103 and lr =20 with
current model (- - -); measured (×) at Re = 170 × 103 and lr = 20 with current model (· · ·)
using the measured distribution at C = 1.1 as the initial distribution function. All graphs are
normalized by a1111,o, which is the measured value of a1111 at C = 1.1.

from the integral time scale based on Taylor’s hypothesis. The Eulerian integral
length scale varies from 4L at the inlet to 20L at C = 8, independent of the Reynolds
number, where L denotes the fibre half-length. The downstream increase in the length
scale is due to the dissipation of small eddies and stretching of turbulent eddies
in the contraction. Furthermore, the integral time scale varies independently of the
Reynolds number from 3.6L/U1,0 at the inlet to 6L/U1,0 at C = 8 with a minimum
value of 1.6L/U1,0 at about C = 2, where U1,0 denotes the streamwise mean velocity
at the inlet. It is observed that at the region close to the contraction inlet, Dr based
on the model given by equation (22) is of the same order of magnitude as the value
obtained from equation (40). However, the values of Dr by equation (22) differ to
results by equation (40), which may be explained by the fact that equation (22) is
valid only in homogeneous isotropic flow and for long fibres. The accuracy of the
rotational diffusion model given by equation (19) is evaluated using the measured
streamwise velocity time signal to estimate ε. It is assumed that small-scale eddies
are locally isotropic in the contraction. The value of Dr based on this model is two
orders of magnitude larger than the value obtained from equation (40).

In the following paragraphs, we investigate the effect of turbulence on the
development of orientation distribution function. This is done by comparing a1111 with
a1111 for Stokes flow evaluated by equations (14), (17) and (31) (denoted by a1111,s).
The orientation distribution measured at C =1.1 is used as the initial condition for
evaluation of a1111,s . Each measured φo at C = 1.1 is used in equation (31) to evaluate φ

at any desired downstream position. This calculation is repeated for all measured fibres
and then the distribution function according to equation (14) is calculated. Finally,
using equation (17), a1111,s for each distribution function is obtained. Considering



264 M. Parsheh, M. L. Brown and C. K. Aidun

0.9

0.8

0.7

0.6

0.5

0.4

2 4 86 10

C

a1111

Figure 10. Comparison of the measured a1111 with the value of a1111,s calculated for Stokes
flow (Dr = 0) from initial orientation distribution, ψp , for the three cases: Re= 85 × 103 and
lr = 60; measured (�), computed (—), Re= 85×103 and lr =20; measured (+), computed (- - -),
Re= 170 × 103 and lr = 20; measured (×), computed (. . .).

that equation (31) is exact, the advantage of this Lagrangian approach, compared
to using the Fokker–Planck equation (15), is to avoid the accumulation of the error
associated with the initial distribution function of single fibres. Figure 10 shows the
orientation parameter given by Stokes flow and the measured value of a1111. Stokes
flow overpredicts the orientation anisotropy in the contraction owing to the absence
of turbulence. The small deviation between the computed orientation distribution
functions by Stokes flow in figure 10 is due to unequal anisotropy of the initial
profiles. The orientation distribution, ψp , measured downstream of the contraction
inlet, at C = 1.1, is slightly anisotropic and differs between each case. The anisotropy
in orientation distribution at this position can be attributed to the small contraction
of flow in the straight channel owing to boundary-layer growth.

It is of particular interest to study the development of a1111 through the contraction
in terms of the Reynolds number. As shown in figure 10, increasing the Reynolds
number from 85×103 to 170×103 with lr = 20 leads to a slight decrease in orientation
anisotropy.

The effect of turbulence characteristics at the contraction inlet on orientation
distribution is studied by changing the grid position relative to the contraction inlet,
lr , while keeping the Reynolds number constant at 85 × 103. At lr = 60, owing to
lower turbulent intensity along the contraction centreplane, a larger number of fibres
align with the streamwise direction compared to lr = 20. This leads to a higher value
of orientation parameter in this set-up.

It is important to identify the region in the contraction where rotational diffusion
has a significant influence on the dynamics of fibre orientation. Figure 11 shows
the ratio of a1111 and evaluated orientation parameter in Stokes flow, a1111,s , for
case Re= 85 × 103 and lr = 60. The measured ψp at C =1.6 is used as the initial
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Figure 11. Ratio of measured and computed values of orientation anisotropy parameter
based on measured ψp at C = 1.6 for Re= 85 × 103 and lr = 60.

profile for Stokes flow evaluation. As seen from this figure, the orientation parameter,
a1111, nearly follows the Stokes flow development at C > 2. To show the actual
comparison of the orientation distribution functions, the normalized polar diagram
of the measured and computed distribution functions at C = 3.4 and C = 5.6 are
presented in figures 12 and 13, respectively. The two plots almost overlap, confirming
the conclusion from figure 11. Similarly, the orientation distribution function at
Re = 85 × 103 and Re = 170 × 103 for lr =20 follow the Stokes flow development
at C > 4, as shown in figure 14. Comparison of the results in figures 11 and 14
shows that for the case when lr = 60, the randomizing effect of turbulence becomes
insignificant further upstream (i.e. lower contraction ratio) owing to the relatively
lower turbulent intensity at the inlet. The fact that the orientation anisotropy at large
C closely follows the prediction based on Stokes flow implies that the fibre inertia is
negligible. Thus, we conclude that the microscopic Reynolds number based on fibre
diameter, not the fibre length, is a more appropriate scale for the fibre dynamics. This
agrees with the assumption of Bernstein & Shapiro (1994).

For all cases investigated, relative importance of turbulence disappears when the
streamwise turbulence intensity falls below 1.5 %, according to figures 11 and 14.
However, Per is a better measure of the relative importance of turbulence and mean
velocity gradient (Krushkal & Gallily 1988). Figure 15 shows the computed Per based
on equation (40) along the contraction centreline for all cases. Based on figures 11,
14 and 15, we conclude that the effect of turbulence on the orientation distribution
function becomes insignificant when Per > 10.

5. Discussion and conclusion
We have directly observed the influence of turbulence on the development of the

orientation distribution of a dilute suspension of stiff fibres at high Reynolds number
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Figure 12. Measured (�) and computed (+) normalized orientation distribution function at
C = 3.4, Re= 85 × 103 and lr = 60.
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Figure 13. Measured (�) and computed (+) normalized distribution functions at C =5.6,
Re =85 × 103 and lr = 60.

in a planar contraction. The development of orientation anisotropy at high Re flow
is shown to be accurately modelled by a Fokker–Planck type equation.

Nearly isotropic homogeneous turbulence with uniform mean velocity profile is
introduced at the contraction inlet. The downstream development of orientation
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Figure 14. Ratio of measured and computed values of orientation anisotropy parameter
based on the measured ψp at C = 3.3 for Re= 85 × 103 and lr = 20 (+), Re= 170 × 103 and
lr =20 (×).
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Figure 15. Development of Per in the contraction for cases Re= 85 × 103 and lr = 60 (—);
Re= 85 × 103 and lr =20 (- - -); and Re =170 × 103 and lr = 20 (. . .).

distribution shows that the rotational diffusion coefficient decays exponentially with
local contraction ratio, C, and is dependent on inlet turbulent characteristics. However,
the effect of turbulent energy production on fibre orientation in the contraction is
observed to be negligible. This is attributed to the small production of turbulent energy
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at C < 2, where turbulence closely follows the decay of grid-generated turbulence in
a rectangular channel, and the large streamwise rate of strain at large C which
dominates fibre orientation and offsets the effect of turbulence. In addition, the
development of the orientation distribution function implies a rather weak dependence
on Reynolds number. Furthermore, the results show that the influence of turbulence
on fibre rotation is negligible for Per > 10.

Since the orientation distribution function at large C develops closely to the
prediction based on Stokes flow, this implies that the effect of fibre inertia is negligible.
Based on the results of this work, fibre diameter is the appropriate length scale to
determine the fibre Reynolds number and thus the effect of inertia.

The results obtained in this study are based on homogeneous isotropic turbulent
flow with uniform mean velocity profile and negligible turbulent production at inlet.
We hypothesize that the results and the empirical relation for Per presented in this
study may apply, in general, to planar contractions with any inlet flow conditions
except in the region where production of turbulent kinetic energy may be significant.
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under grant DE-FC36-99GO 10416. We also acknowledge assistance from Mr Paul
McKay, Mr Katsumasa Ono and Dr Chang Park.
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